Currituck Sound Ecosystem Restoration Study

Feasibility Scoping
Meeting
2 September 2011

Currituck Sound Ecosystem Restoration FSM Presentation

Study Background

Historic Overview

Marsh and Shallow Water

Submerged Aquatic Vegetation

Shorebird Nesting

Wading Bird Nesting

Systems Context

Existing Conditions

SAV/ Coastal Marsh and Shallow Water

Complexes

Bird Nesting Islands

Future without Project Conditions

SAV/ Coastal Marsh and Shallow Water

Complexes

Bird Nesting Islands

NER Plan Formulation

Problems and Opportunities

Planning Objectives and Constraints

Sighting of Restoration Opportunities

Measures

EBA

Additional Information

Next Milestones

Discussion

Historic Project Overview

Study Authority

Reconnaissance Report Approved

Feasibility Cost Sharing Agreement

ATR – FSM Package

HQ Policy Review – FSM Package

Policy Guidance Memorandum Received

IPR 1

IPR 2

IPR 3

Policy Compliance Memorandum

Feasibility Scoping Meeting

March 11, 1998

July 2001

February 2004

September 2009

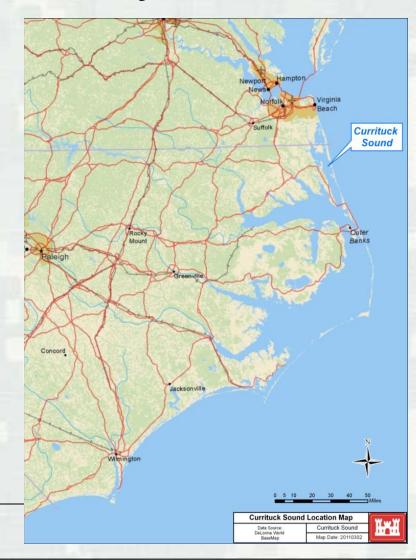
March 2010

May 2010

May 2010

December 2010

March 2011


June 2011

September 2011

Currituck Sound Ecosystem Restoration Study

"Resolved by the Committee on Transportation and Infrastructure of the United States House of Representatives, that the Secretary of the Army is requested to review the report of the Division Engineer dated June 25, 1991, on Eastern North Carolina above Cape Lookout, North Carolina, and other pertinent reports, to determine whether modifications to the recommendations contained therein are advisable at the present time in the interest of water quality, environmental restoration and protection, and related purposes in Currituck Sound."

Currituck Sound Ecosystem Restoration Study

State of North Carolina through the NC Environmental and Natural Resources - Division of Water Resources (NCDWR)

Currituck Sound Ecosystem Restoration Study

North Carolina Department of Environmental and Natural Resources -Division of Water Resources (NCDWR) (non-federal Sponsor) North Carolina Division of Marine Fisheries

North Carolina Division of Marine Fisheries (NCDMF)

North Carolina Division of Water Quality (NCDWQ)

North Carolina Wildlife Resources

Commission (NCWRC)

North Carolina Division Coastal

Management (NCDCM)

North Carolina National Estuarine

Research Reserve (NCNERR)

North Carolina Coastal Federation (NCCF)

Elizabeth City State University (ECSU)

US Fish and Wildlife Service (USFWS)

US Geological Survey (USGS)

Currituck County

Pasquotank River Basin Regional Council Hampton Roads Planning District Commission The Nature Conservancy (TNC) Virginia Department of Environmental Quality Virginia Department of Conservation & Recreation

National Audubon Society

National Oceanic and Atmospheric

Administration (NOAA)

Local environmentalists and sportsmen

Albemarle Pamlico National Estuary Program

North Carolina Coastal Land Trust (NCCL)

Back Bay National Wildlife Refuge (BBNWR)

Mackay National Wildlife Refuge

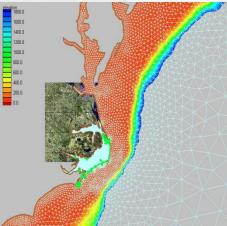
Cape May Plant Materials Center

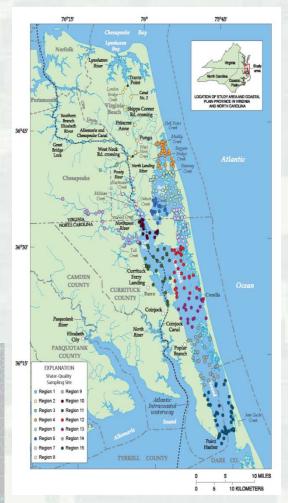
Virginia Department of Game and Inland

Fisheries (VDGIF)

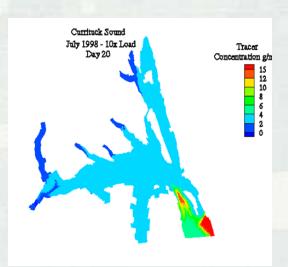
US Department of Agriculture

- NE segment of Albemarle-Pamlico Sound
- Includes Currituck Sound, NC and Back Bay, VA and their surrounding watersheds
- Separated from the Atlantic by Outer Banks
- Sound is approximately 36 miles long, 3-8 mi wide and 153 mi² (~98,000 acres)
- Located predominately in Currituck and Dare Counties, NC and Virginia Beach County, VA
- Currituck Sound joins Back Bay in Virginia Beach, Virginia to the North and joins Albemarle Sound on the South
- Connected to the Atlantic Ocean through Albemarle Sound and Oregon Inlet


2001 Scoping suggested that poor WQ was a driver of ecosystem degradation


	HRPDC	Elizabeth City Citizen	NCDMF	NCDCM	NCDCR	USFWS	NCWRC	DWQ	USDC
Natural resource management	V	-	Н	-		-			
SAV		_ √		√		√	√		√
Fisheries		√				V			V
Migratory Waterfowl		V				V	v		
Salinity		√			1	V			
Water Quality		٧		٧		√	٧	٧	٧
Monitoring		√							
Flow of freshwater		٧							
Tidal surges		√							
Water level		√		V					
Anadromous fish			V						٧
Nursery areas			V						
Turbidity				V			٧		
Ship losses/ wreck sights					V				
Protection of resource waters								v	
Essential fish habitats									٧
Protection of wetlands									٧

- •Collaborative multi-agency data collection initiative
- Developed a hydrologic/hydrodynamic and water quality monitoring and modeling group
- •Data collection facilitated development of coupled hydrodynamic and water quality models of Currituck Sound and vicinity
 - •ADCIRC, CH3D, CE-QUAL-ICM

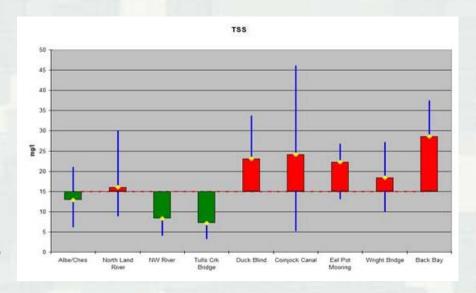


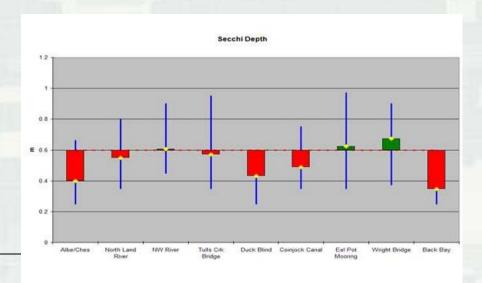
Wind driven Tide

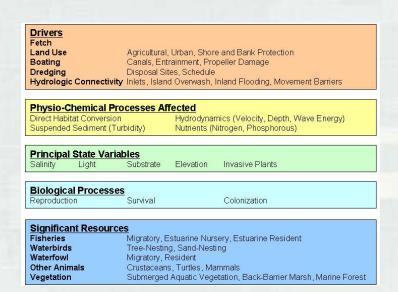
- •Wind direction, speed, and duration, are key factors in the tidal influence of Currituck Sound
- Higher water levels result from a South wind and low water levels from North wind

Limited Flushing

- •Simulated tracer concentrations in Currituck Sound were not influenced by Oregon inlet
- Limited impact of the tributary inflows

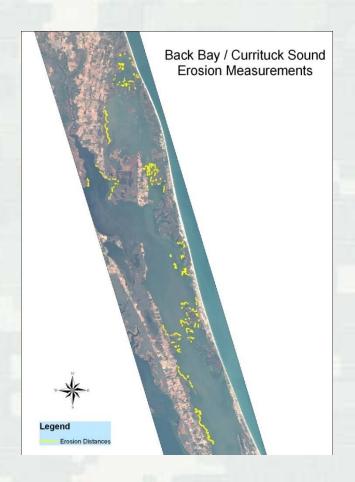


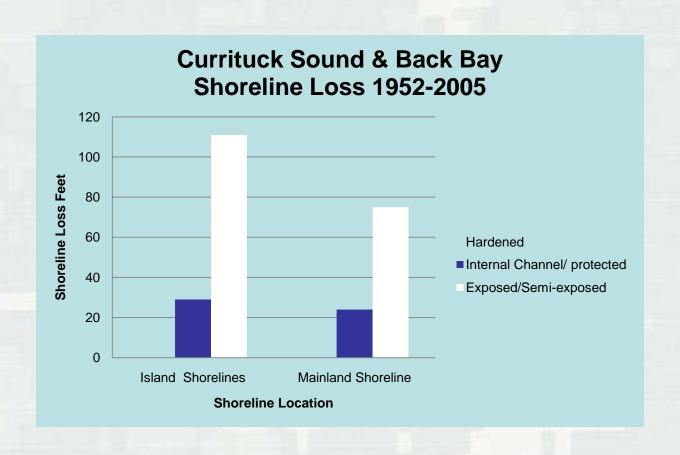

- Monitoring showed current nutrient loadings to the system are not as high as previously perceived and WQ is not as degraded as historically observed
 - Nitrogen and phosphorous values - within an acceptable range
 - Algal levels normal
 - DO levels low at times at certain locations but were not indicative of a major problem
 - light penetration reduced by the presence of solids and algae in addition to color in the water column



- SS concentrations in the open water - higher than SS in the tributaries
- Source of the SS from within the Sound - result of sediment resuspension caused by high energy wind-wave events
- Re-suspension associated with loss of SAV

- Coordinated with ERDC
- Describes the general functional relationships among essential components of ecosystem
- Helped identify significant ecological resources; conditions governing resources
- Documented drivers and stressors
- Helped tell the story of "how the system works"





Using GIS - it was determined that erosion is a significant problem within the Sound

- 1952 imagery overlaid with 2005 imagery to measure the distance of eroding shoreline
- Analysis sites based on fetch, boat wakes, shoreline type, and exposure direction
- 905 erosion vectors created throughout the Sound

Public Meetings - September 28 & 29, 2010

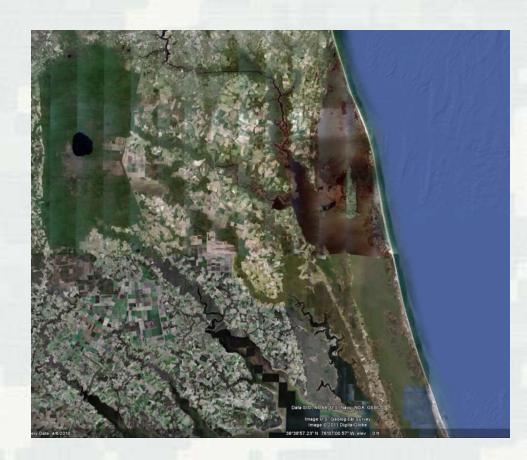
- Present study findings
- Solicit feedback on problems

NOI for preparation and release of a Draft EIS published in the *Federal Register* (volume 76, number 125) on June 29, 2011

		SCREENING CRITERIA (Y, N, MAYBE)				
	IDENTIFIED DOOD! EMO	Within Problem				
	IDENTIFIED PROBLEMS	Is it Fixable?	Is it a Problem?	Scope of the Study?	Addressed by Others?	
	Nutrient Loading					
	Septic Leakage	YES	MAYBE	MAYBE	YES	
	Princess Ann Road Causeway And Corey's Ditch - Loss of Marsh					
	Sheetflow	YES	YES	YES	NO	
≱	Population Growth and Development	NO	YES	NO	NO	
₽	Agriculture Land-use Practices	YES	MAYBE	YES	YES	
ឆ្ព	Turbidity					
WATER QUALITY AND HYDROLOGIC CONNECTIVITY	Pulsed Upstream Sediment Loadings (i.e. High Rain Events) from Farming,	YES	MAYBE	YES	MAYBE	
ᅙ	Development, etc. Wind Driven Re-suspension of Sediment Within Currituck Sound					
ပ္		YES	YES	YES	NO	
<u> </u>	Change in Sediment Composition (i.e. Organic Inputs from Erasian Milfoil Die-off)	YES	YES	YES	NO	
ž	Sedimentation from Shoreline Erosion	YES	NO	YES	YES	
ž	Salinity	ILS	INO	ILS	ILO	
¥	Dredging of Navigational Channels	NO	NO	YES	NO	
à	Great Bridge Lock	MAYBE	MAYBE	NO	YES	
¥	North Landing River Lock	MAYBE	MAYBE	NO	YES	
≱	Coinjock Canal	MAYBE	MAYBE	NO	NO	
Ę	Diversion of Freshwater Flows (Decrease Freshwater Input to the System)	MAYBE	MAYBE	NO	NO	
Ž	Drought	NO	MAYBE	NO	NO	
2	Saltwater Pumping	YES	NO	NO	NO	
Ë	Canal #2	MAYBE	MAYBE	NO	NO	
Š	Diversion of Great Dismal Swamp Inputs	MAYBE	MAYBE	NO	NO	
	Joyce Creek	MAYBE	MAYBE	NO		
	Freshwater Diversion and Withdrawals for Consumption	NO	YES	NO	NO	
	Connectivity					
	Closing of Inlets	YES	MAYBE	YES	NO	
	Mainland Shoreline Erosion- marshes	YES	YES	YES	NO	
9	Marsh Island Erosion/Loss	YES	YES	YES	MAYBE	
WETLAND	Wetland Conversion to Agriculture, Forestry, and Developed Lands	NO	YES	MAYBE	YES	
ᇤ의	Ditching and Draining of Wetlands	YES	YES	MAYBE	NO	
⋝	Decline in Freshwater Wetlands	YES	YES	YES	NO	
	Decline in Coastal Emergent Marsh	YES	YES	YES	MAYBE	
卢	Minimal Flushing - Accumulation of Upland and Riverine Sediments	MAYBE	MAYBE	NO	NO	
Ę	Contaminated Sediments	YES	MAYBE	YES	YES	
SEDIMENT	Anthropogenic Blockage of Coarse Sediment Influx to the System (i.e.					
	Overwash Events)	YES	YES	YES	NO	
45						
DREDGING	Historic Unconfined Disposal of Sediment (i.e. Sidecast Dredging)	YES	YES	NO	NO	
	Need for Dredging to Fulfill Authorized Depths - Turbidity Associated with					
	Vessel Activity	YES	YES	NO	NO	
Δ	No Capacity Within Current Confined Disposal Facilities (CDF's)	YES	YES	NO	NO	
	Seasonal Die-Off of SAV	NO	NO	NO	NO	
	Waterfowl Decline	YES	YES	YES	NO	
	SAV Decline	YES	YES	YES	NO	
	Exotic Species (i.e. Phragmites australis, Eurasian watermilfoil)	YES	YES	YES	MAYBE	
4 ⊢	Lack of Ecosystem Function (i.e. Connectivity Between Habitats)	YES	MAYBE	YES	NO	
ВІОТА	Decline in Black Bass Populations	YES	NO	NO	NO	
ш	Decline in Biodiversity	YES	YES	YES	NO	
	Decline in Nesting Island Habitat	YES	MAYBE	YES	NO	
	Blockage to Anadromous Fish Spawning Habitat	YES	MAYBE	YES	MAYBE	
	Vessel Prop wash and Wake Impacts to SAV	YES	YES	NO	NO	
	Decline in Fish Habitat Diversity	YES	YES	YES	NO	

The following problems were carried forward for further consideration:

- Sediment loading from upstream during high discharge events
- Loss of marsh sheetflow
- Loss of connectivity with the ocean through inlet closures
- Shoreline erosion mainland marshes and islands
- Decline in wetlands freshwater and coastal -
- Blockage of coarse sediments from entering system
- Decline of SAV and other important habitat
- Decline in species biodiversity
- Decline in waterfowl
- Increase in exotic and invasive species


Alteration of the natural coastal processes in the CSER area has resulted in the creation of a unique wind-tide driven oligohaline back barrier ecosystem. This ecosystem, which once supported an abundance of submerged aquatic vegetation, coastal marshes, and islands and associated wildlife and fisheries, has been degraded as a result of anthropogenic activities in the Sound and surrounding watershed. Areal extent of these keystone habitats has declined, weakening their interconnectedness and altering energy regimes throughout the Sound thereby reducing their capacity for self repair. This facilitates a negative feedback that continues to destabilize the ecosystem by reinforcing change and causing continued site alteration.

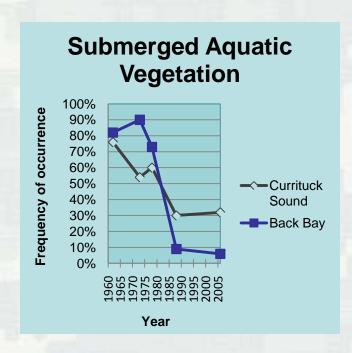
- Salt water system connected to the Atlantic Ocean by series of inlets
- Five known historic inlets from early 1600's to early 1800's
- Last inlet closed mid-1800's (Caffey's)
- Hydrology also affected by other anthropogenic(i.e navigation channels) and natural events (storms)

- Significant population and development in the northern portion of the study area and along the outer banks
- Predominance of historic and current agricultural land use throughout the watershed
- 2 major tributaries supply majority of freshwater to Sound:
 - North Landing River drains
 117 mi²; channelized entire
 length; part of AIWW
 - Northwest River drains 196 mi²

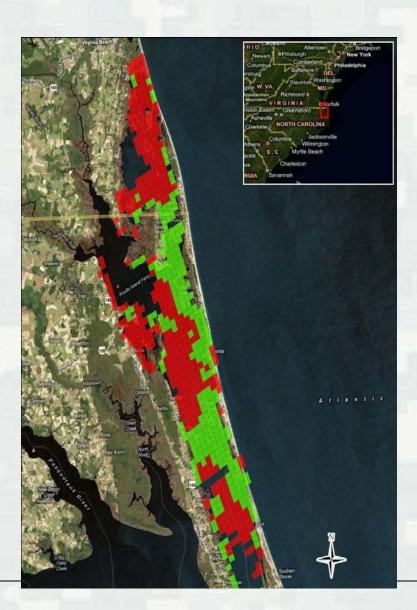
- Upon closure of historic inlets >100 mi² of lunar tidal brackish marsh converted to wind tide driven fresh (<0.5 ppt) to oligohaline (0.5-5 ppt) system
- Transition to freshwater fisheries and increased waterfowl use
- Significant shifts diversity and abundance
- Now rare and nationally significant habitat
 - SAV/ Coastal Marsh and Shallow Water Complexes
 - Supports large sport fishing and hunting industry unique Currituck Sound
 - Only remaining wading bird rookery island provides critical nesting habitat

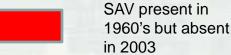
- Back barrier marsh complexes starved of coarse sediment loads from overwash & wind driven transport
- Sandy habitat for shorebirds converted to a vegetated & stabilized community
- Loss of back barrier marsh and bird nesting habitat do to erosion

- Significant portions of marshes invaded by *Phragmites australis*
- Prior to the mid-1980s, NC had lost
 ~50 % of original wetlands acreage.



- Three significant declines in SAV since 1920's
 - 1920's: decline after lock opening & enlargement of Chesapeake and Albemarle Canal
 - Mid-1960's: major decline of SAV in Back Bay
 - first observance of *Eurasian watermilfoil* (1964) Dominate species (1967)
 - Late 1970's: < ½ of early 1970's population
 - Changes in biomass & distribution attributed primarily to increased turbidity & turbulence resulting from unusual weather during the early growing season of 1978





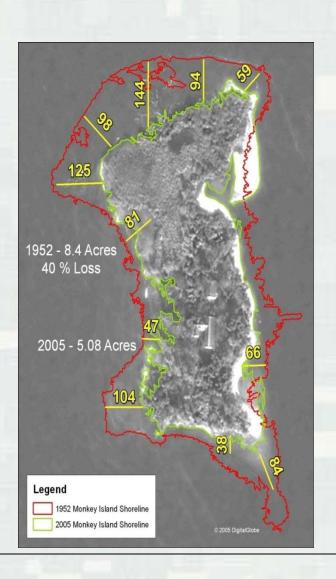
- The Eurasian watermilfoil boom -
 - Outcompeted native species
 - Short term habitat improvement
 - Increase in freshwater fish species abundance
 - Long term decline in habitat sustainability
- 1980's Significant mass die-off of *Eurasian* watermilfoil
 - Substrate was left devoid of vegetation
 - More vulnerable to re-suspension of sediment
 - Organic load to the system
 - Increased clarity issues

SAV present in in 2003

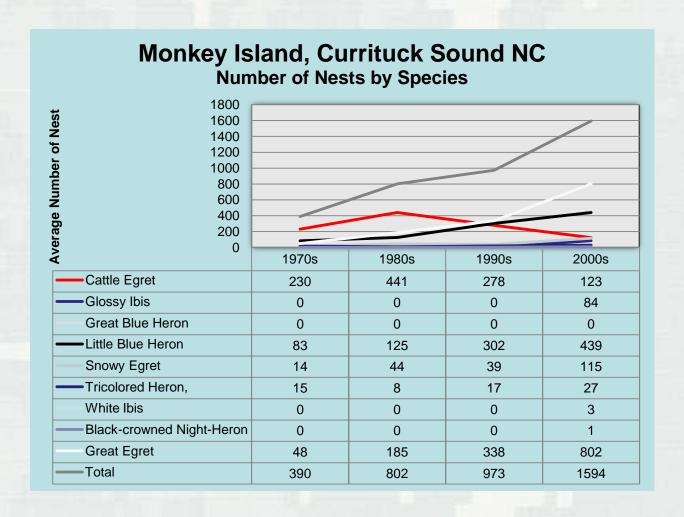
- Historically, gulls and tern nesting colonies were on natural beaches
- Expansive beach development has degraded areas for nesting
- New alternative estuarine island nesting sites resulted from island building for dredged material disposal.
- Most current nesting occurs in the estuary & almost half of all nesting sites are on man altered substrate since the 1970s.

- Historically most heronries in coastal swamps
- Logging has degraded or eliminated areas for nesting
- It is believed historically multiple wading bird nesting sites throughout Currituck Sound
- Monkey Island currently <u>only</u> remaining wading bird nesting habitat in study area
- Monkey island

1952 - 8.4 ac,


2005 - 5.1 ac

2010 - 4.4 ac


Note: For constructed wading bird nesting islands, a size range of 5-25 ac is recommended

Comparison of 1952 to 2005 shorelines at Monkey Island using aerial imagery and measurement of erosion vectors

Systems Context

As a consequence of the intricate interactions and dependencies of the SAV and coastal marsh habitats, degradation and/or loss of one habitat has a huge negative implication to the other and to system quality. As a result, they cannot be considered as separate systems.

For this Study – these systems will be referred to as Submerged Aquatic Vegetation/ Coastal Marsh and Shallow Water Complexes

Existing Conditions

- SAV significant natural resource in the study area
- SAV habitat close to shore and among marsh islands
- •Majority on the back side of the barrier beaches - associated with the lee-side of the marsh communities
- 9,857 acres of SAV Back Bay and Currituck Sound in 2001
- Back Bay approximately 5% of its SAV distributions of 25 years ago

Existing Condition

Within the study area, large areas of marsh that once provided wind breaks (which reduce fetch and calm shallow waters), bird rookeries, and aquatic habitat have eroded away.

Documentation of Land Loss

- 1951-52 USGS aerial photography
- 2005 Satellite images
- 3 high quality image pairs analyzed

Faraby Island Marsh Loss.
The red areas represent land loss since 1963

Site Name	Type	1952-53 Acres	2005 Acres	Acres lost	Perce nt
		Acres	Acres	1081	Loss
Faraby Island	Marsh	14	1	13	93%
	Island				
Porpoise Point	Mainland	278	225	53	19%
	Marsh				
Monkey Island	Wooded	8	5	3	38%
	Island				

Existing Conditions

Development, beach driving, and associated disturbance factors on Currituck Banks have eliminated the piping plover and American oystercatcher from the study area and significant declines in least tern numbers are also evident

• In 1992 – 4 least tern colonies existed with 3-6 nests at each site; 2004 – 2 nests; and in 2010 – 1 nest.

Terns generally prefer bare or nearly bare substrates

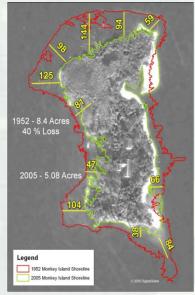
Existing Conditions

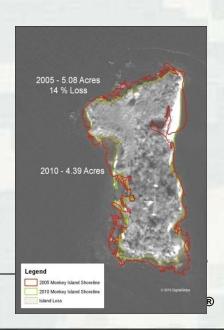
- Monkey Island supports herons, egrets, and ibis
- Often holds the largest little blue heron colony in the state
- Continued erosion of Monkey Island is currently decreasing the amount of available nesting habitat
- Nest crowding is apparent and is increasing.
- Increased accumulation bird feces could kill vegetation through soil acidification reducing appropriate nesting trees
- Monkey Island supports tidal wetlands and shelters about 3 acres of SAV from wind and wave attack

Future Without Project

- Based on coastal land loss tends ~ 430 ac of estuarine marsh could be lost in the Currituck Sound Study Area every 6 years, or 3,600 acres over a 50 year period of analysis
- •The possibility of submergence and marsh loss due to increased sea level and/or land subsidence has been identified as a concern for the marshes of the project area as well as the lower meso-tidal and microtidal marsh environments of the surrounding region.
- In Currituck Sound and Back Bay wind and wave erosion is causing extensive wetland shoreline and marsh island loss which is expected to worsen with continued sea level rise
 - In Back Bay the SLAMM model suggests that due to the effects of increased salinity water depth, and wind fetch 2000 ac of estuarine marsh could be lost by 2050 (FWS)

Future Without Project

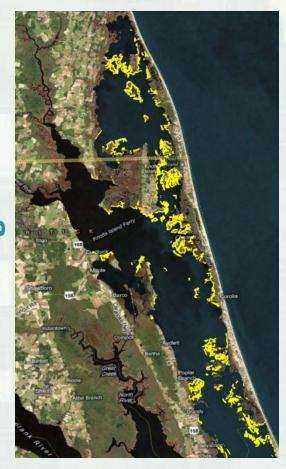

- Continuation of current SAV population trend of relatively stable populations well below historic potential
- Without a increased and /or sustainable "native" SAV population throughout the Sound, future Eurasian watermilfoil events could cause significant disruption to the system due to its boom/bust habit



Future Without Project

- Assuming a continued erosion rate of 0.14 ac/year and 2015 project construction date, Monkey Island would be expected to be less than 4 acres at the beginning of a federal project and under a no action scenario the island could be gone within the 50 year period of analysis.
 - Continued erosion of Monkey Island will decreased the amount of available nesting habitat for wading birds
 - Without action to stop island loss, impacts would be expected to result initially in fewer nests and eventually in rookery abandonment, when potential tree nesting site were no longer available.

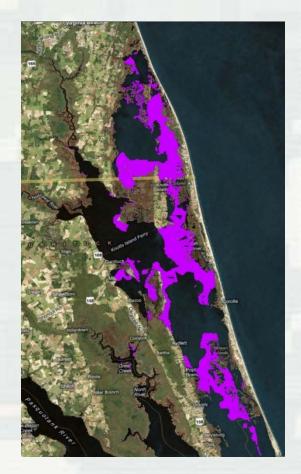
- SAV have significantly declined since the late 1970's thereby reducing spawning habitat and/or nursery habitat for a variety of freshwater, anadromous, shellfish, and estuarine fish species as well as a primary food source for wintering waterfowl.
- Coastal marshes and shallow water habitats in Currituck Sound and Back Bay waters have been lost to erosion or invaded by exotic plant and animal species.
- Loss of interconnectedness of SAV and coastal marsh and shallow water habitats has resulted in a decline in ecosystem/habitat quality and function.
- Loss of marsh islands, coastal swamps, and natural beaches have resulted in a loss of wading bird and shorebird nesting habitat across the sound
- A **historic** decline in water quality (i.e. nutrient and sediment loading) from residential development, agriculture, and dredging activities, has left the sound in an impaired state
- There has been a decrease in water clarity primarily due to the re-suspension of bottom sediments during wind events.



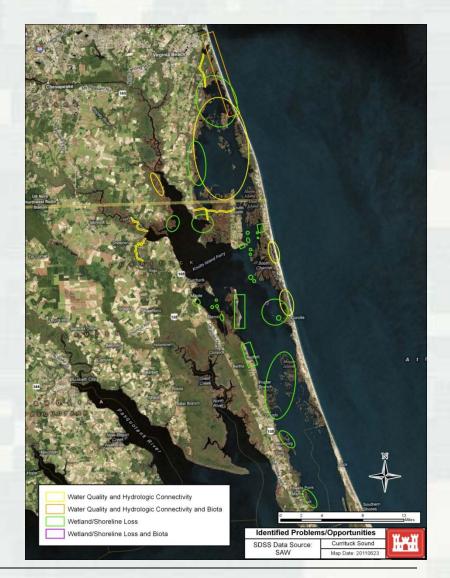
PROBLEM	OPPORTUNITY		
Loss of Submerged Aquatic Vegetation /	Re-establish native SAV bed by planting and/or seeding		
Coastal Marsh and Shallow Water Habitat Complexes	Reclamation of lost acres of back barrier and mainland marsh and marsh islands within the Sound or the creation of new marsh habitat		
	Protect the shorelines of existing, restored, and created marshes		
	Establish multi-functional habitats and dredged material disposal islands that allow proper maintenance of the AIWW and provide protected areas to establish SAV		
	Control and manage the invasive species, <i>Phragmites australis</i> and <i>Myriophyllum spicatum</i> (Eurasian Watermilfoil), in order to sustain a diverse native habitat		
Loss of Estuarine Islands and Waterbird Nesting Habitat	Protect and restore existing significant wading bird nesting habitats (i.e. Monkey Island).		
	Reclaim lost acres of back barrier and mainland marsh or create new marsh shorebird habitat		
•	Restore native SAV beds and stabilize sediment and cycle nutrients		
Clarity	Create riparian buffers to help improve water quality by reducing turbidity, suspended solids, and nutrient loading		
	Create/restore marsh island and back barrier marsh features to help reduce fetch and minimize wave induced re-suspension of sediment		
	$\mathbb{R}^{\mathbb{R}}$		

- Increase submerged aquatic vegetation/coastal marsh complex habitat throughout Currituck Sound and Back Bay to a sustainable acreage over the 50 year period of analysis, as measured by an increase in average annual habitat units
- Provide protection against future erosion and loss of existing and restored submerged aquatic vegetation/coastal marsh complex habitat throughout the Currituck Sound and Back Bay over the 50 year period of analysis
- Increase and sustain the extent of diverse nesting-bird habitats within the Currituck Sound study area over the 50 year period of analysis, as measured by an increase in average annual habitat units

- Induced flooding
- Adverse effects to navigation channels
- Negative impacts to threatened and endangered species
- Violation of established water quality standards in the study area
- Negative impacts to existing critical and high quality habitat
- Availability of suitable substrate for certain restoration measures
- Costly real estate



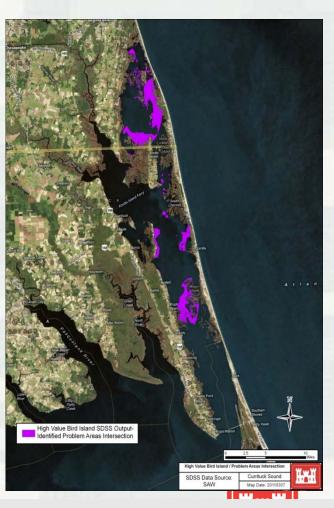
Marsh Focus Areas


SDSS was used to identify areas which no longer contain these habitats & present high opportunity for restoration

GIS-based method for scaling, weighting, and combining multiple, spatially explicit variables for the purpose of identifying distinct areas within a larger landscape that present good opportunities for restoration of a particular resource

Nesting Island Focus Areas

Meetings were held with Federal, state, and local agencies, and stakeholders to obtain input on restoration needs and opportunities

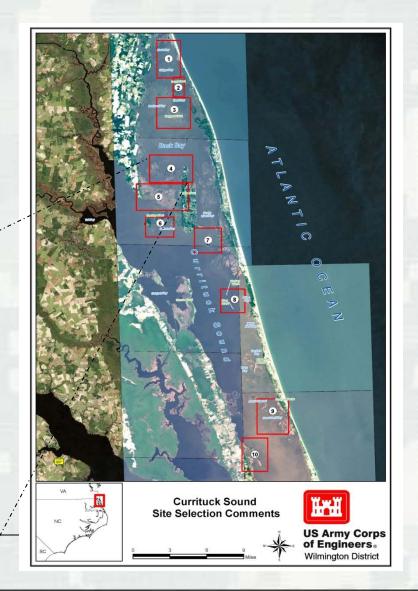


Locations:

- most degraded
- posing an opportunity
- need for restoration by the stakeholders

Overlaid on the map of areas identified as "high opportunity" for restoration by the SDSS

From the regions of overlap, general restoration opportunity areas were identified



Nesting Island Focus Areas

Marsh Focus Areas

- Web-meeting held with agency and non-governmental organizations
- Present the results of the SDSS
- Obtain assistance in further distinguishing degraded functions & values & opportunities within the identified sites
- Participants identified very specific restoration opportunities within each general area

Nonstructural:

- Habitat restoration
 - Control of Phragmites
 - Vegetative Plantings

Structural:

- Sediment Supply and Distribution (Marsh, Sand Island, Nesting Island)
 - Channel Dredging and Placement
 - Sediment Delivery from Distant Sources
- Shore Protection
 - Breakwaters/Bulkheads
 - Marsh toe protection structures
 - Sills
- Hydrologic Restoration/Connectivity
 - Removal of existing impediments to sheetflow
 - ► Removal of existing impediments to overwash
 - Reestablish tidal exchange through the creation of inlets
 - Culverts

Achievement of Planning

Objectives - The measure, when implemented alone or in combination with other measures can support one or more of the ecosystem objectives for this study. The more objectives supported, the more holistic the solution.

Avoidance of Constraints – The measure avoids or has minimal impact to existing infrastructure, T&E Species, wetlands, navigation, and flooding

Sustainability – There is opportunity for the measure to be sustainable in that it is capable of adapting to sea level rise or is relatively resilient to coastal disturbances.

Impacts to Socioeconomic Resources - Avoidance of negative impacts to vital socioeconomic resources including cultures, community, infrastructure, business and industry, and flood protection.

MEASURE/SCREENING CRITERIA	Achievement of Planning Objectives	Avoidance of Constraints	Sustainability	Avoids Impacts to Socioeconomic Resources
Control of Phragmites	YES	YES	YES	YES
Vegetative Plantings (SAV)	YES	YES	YES	YES
Vegetative Planting (Marsh)	YES	YES	YES	YES
Channel Dredging and Placement (Marsh)	YES	YES	MAYBE	YES
Thin layer dispersal of sediment (Marsh)	YES	MAYBE	MAYBE	YES
Channel Dredging and Placement (Sand Island)	YES	YES	YES	YES
Sediment Delivery from Distant Sources (Sand Island)	YES	YES	YES	YES
Restoration of ocean overwash processes (Sand Island)	YES	MAYBE	NO	MAYBE
Channel Dredging and Placement(WBI)	YES	YES	YES	YES
Sediment Delivery from Distant Sources(WBI)	YES	YES	YES	YES
Breakwaters	YES	YES	YES	YES
Marsh toe protection structures	YES	YES	YES	YES
Sills	YES	YES	YES	YES
Removal of existing impediments to sheet flow	YES	MAYBE	YES	YES
Removal of existing impediments to overwash	YES	NO	YES	MAYBE
Reestablish tidal exchange through the creation of inlets	YES	MAYBE	MAYBE	NO
Culverts	YES	YES	YES	YES

Additional information is currently being collected for each site. Once this information is obtained, all possible measures and combination of measures that meet our objective and engineering requirements will be analyzed to identify the best combination of measures for each restoration site.

These site-specific combinations will form the basis for the assembly of preliminary alternatives and will be evaluated further in the evaluation and analysis of alternatives leading to determination of the NER or Tentatively Selected Plan..

A preliminary EBA will be conducted on first round restoration alternatives at identified potential restoration sites.

Modified USEPA Salt Marsh Model

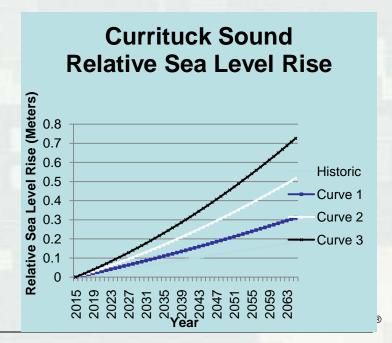
used to assess and evaluate SAV/Coastal Marsh and shallow water complexes habitat values

- (1) marsh habitat types
- (2) marsh morphology
- (3) marsh size
- (4) degree of anthropogenic modification
- (5) vegetative heterogeneity
- (6) surrounding land use
- (7) Connectivity
- (8) vegetation types

Habitat Suitability Indices

developed by USFWS for the purpose of documenting the quality and quantity of available habitat for selected wildlife and fish species marsh habitat types

- (1) sand nesters least tern
- (2) tree nesters white ibis and great egret


Because both models provide a comparable output metric (habitat unit), the outputs can simply be added together to calculate a total output for any alternative

^{*} Model Review Plan has been approved and review of EPA model for a one-time use is in progress

- Results of preliminary EBA runs will be combined with preliminary cost estimates will be entered into the IWR Planning Suite Program to generate all possible combinations of independent and/or or dependent sets of management measures for each identified restoration opportunity site
- Non-cost effective opportunities will be eliminated
- Data will be collected for each remaining site and associated measures to refine design, costs, and benefits
- If multiple measures or combinations of measure exist at a site, IWR will be run for that site to chose the best buy plan for the site
- Once a single alternative is identified for each restoration opportunity site, IWR will be run with refined costs and benefits to determine a final array of best buy plans for the Sound
- Best Buy plans will be further evaluated to select a NER plan

- Eco PCX has submitted a Review Plan Endorsement Memo to SAD for the MSC Commander's approval
- Model Review Plan has been approved and review of EPA model for a one-time use is in progress
- Sea Level Rise
 - In accordance with ER 1165-2-211

Next Milestones

AFB Read-Ahead to SAD/HQ

March 2012

AFB Conference

May 2012

Draft Report to SAD/HQ

October 2012

Public Review, Draft Report

March 2013

DE Notice, Final Report

August 2013

CWRB

October 2013

Questions and Discussion

